Terrestrial Planet Definition

Terrestrial Planet Definition

A terrestrial planet is any planet in the universe that has earth-like composition, such as rocks, and other similar solid substances. For instance, Mars is a terrestrial planet in our solar system, whereas Jupiter is not. This is because modern geologists, astrophysicists, and astronomers understand Mars to contain solid formations correlative to earthly sedimentary rocks, igneous rocks, and metamorphic rocks. On the other hand, Jupiter is currently understood to be a gaseous stage planet with no core, mantel, or crust.

Terrestrial Planets in Our Solar System

  • Mercury
  • Venus
  • Earth
  • Mars

 

Similar Posts

  • Passive Methane Mitigation

    Passive Methane Mitigation Passive Methane Mitigation: Passive systems refer to the non-mechanical and non-electric components of the methane mitigation process. These components remove the vapor intrusion risks of methane soil gas migration into buildings atop Los Angeles Methane Zones and Methane Buffer Zones. In fact, methane testing results typically indicate the necessity for a passive…

  • Milliequivalent per liter

    Milliequivalent per liter Milliequivalent per liter (meq/L): A unit used to express the chemical equivalence of the concentration of solutes in a solution. It is calculated by dividing the concentration of a substance (in mg/L) by its equivalent weight. This measurement helps in understanding the reactive capacity of ions in the solution.

  • Atmosphere

    Atmosphere Atmosphere: The atmosphere of a terrestrial planet is an outermost series of layers that comprises gaseous phase elements within part of the planet’s gravitational field. For instance, the Earth’s atmosphere exists in the air spaces that are approximately 95 kilometers above the ground surface. And within it, are the troposphere, stratosphere, mesosphere, and thermosphere….

  • |

    Methane on Mars

    Methane on Mars Geologists understand that methane on Mars could relate to possible signs of past life, future sustainability, and similar geological processes to Earth. And sources of methane gas in the Mars atmosphere are presumably from biogenic and petrogenic processes. For example, microbial and thermal decomposition of underground organic matter, or tectonic and volcanic…