Retaining Wall

Retaining Wall

Retaining Wall: A structure that provides the support needed to hold (in place) a mass of earth, preventing it from moving downhill. Retaining walls are relatively rigid structures comprising footings and a drainage system, in order to retain the soils between two different elevations. Updated May 25, 2020.

Construction & Design

A lot goes into the proper designing and installation of these structures. For instance, one important consideration is the natural tendency of the retained material. Other factors are moisture content, subsurface drainage, normal and lateral forces, soil characteristics, vegetation, and more. Furthermore, the local geology must be considered, as the area may have particular slope failure points and faults which need to be mitigated. If these aspects of a site are not properly addressed, a wall may not be well engineered. And as a result, earth pressures can overturn or push the wall towards failure.

The Four Basic Retaining Wall Catagories

Gravity Retaining Walls

A gravity wall is the most basic type. These walls use mass and weight to hold the soil and resist lateral earth pressure. When it comes to materials, a gravity wall has the widest amount of variety. Some options available are pavers, segmented blocks, unmortared stone, and bricks.

Sheet Piling Structure

A sheet piling retaining wall uses a thin wall of wood, vinyl, or steel that is driven directly into the soil. Sheet piling walls have a vertically corrugated structure that provides additional reinforcement and is usually applicable when space is an issue. It can also offer the most cost-effective solution.

Anchored Retaining Wall

An anchored wall is commonly used to provide additional support for structurally thinner walls. It allows for a number of “wall fronts” to be supported by anchors driven into the earth behind them. The anchors are affixed by strips or cables. Usually, these anchors are mechanically driven into the earth and their ends are expanded by mechanical means, or by injecting pressurized concrete.

Cantilevered Wall

This type of retaining wall is also called a reinforced retaining wall and works on the principles of leverage. It makes use of a wall attached to a slab foundation that goes under the soil the wall is supporting with an “L” shape form. A cantilevered wall is considered as the most common type of earth-retaining structure and is favored in commercial developments for its strength.

Similar Posts

  • Reverse Fault Definition

    Reverse Fault Reverse Fault: In the field of geology, a reverse fault is a dip-slip fault in which the hanging wall moves upwards, relative to the footwall. The average dipping angle of a reverse fault ranges from 45 to 90 degrees. However, if less than 45 degrees, it becomes a “thrust fault.” Reverse faults are…

  • Rigidity

    Rigidity Definition Rigidity – In geotechnical engineering and engineering geology, rigidity represents the ratio of the shear stress and the amount of angular rotation that it produces, within a rock sample.

  • De-watering System

    De-Watering System in Methane Mitigation De-Watering: In accordance with the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, a de-watering system is a permanent water removal system in a methane mitigation system. In the mitigation process, a de-watering system consists of perforated horizontal pipes, gravel pockets, sump areas with pumps,…

  • Sedimentary Rock

    Sedimentary Rock Definition In geology, the term “Sedimentary Rock” refers to the classification of rock that is the result of the gradual consolidation and deposition of loose particles of other rock classifications (igneous or metamorphic). Alternatively, sedimentary rocks can also form by the accumulation and precipitation of other natural chemical solutions in a depositional environment….

  • Mesosphere

    Mesosphere Mesosphere: The mesosphere of a terrestrial planet is the third member of the atmosphere. On Earth, the mesosphere starts atop the stratosphere at approximately 50 kilometers above mean sea level and terminates roughly 85 kilometers above mean sea level. The mesosphere is where most meteors burn to determination. Like the stratosphere, the air in…