Terrestrial Planet Definition

Terrestrial Planet Definition

A terrestrial planet is any planet in the universe that has earth-like composition, such as rocks, and other similar solid substances. For instance, Mars is a terrestrial planet in our solar system, whereas Jupiter is not. This is because modern geologists, astrophysicists, and astronomers understand Mars to contain solid formations correlative to earthly sedimentary rocks, igneous rocks, and metamorphic rocks. On the other hand, Jupiter is currently understood to be a gaseous stage planet with no core, mantel, or crust.

Terrestrial Planets in Our Solar System

  • Mercury
  • Venus
  • Earth
  • Mars

 

Similar Posts

  • Hydraulic Conductivity (K)

    Hydraulic Conductivity (K) “Hydraulic Conductivity” (K), in hydrogeology and hydrology, represents the capacity of a porous medium (such as soil) to transmit water, as per Darcy’s Law. To illustrate, the rate at which fluid can move through a permeable medium (such as soil), depends on the properties of that soil (such as intrinsic permeability) and…

  • Thermosphere

    Thermosphere Thermosphere: The thermosphere of a terrestrial planet is the fourth and final member of the atmosphere. On Earth, the thermosphere starts atop the mesosphere at approximately 85 kilometers above mean sea level. The upper limit of the thermosphere is reasonably presumed to terminate approximately 95 kilometers above mean sea level. In fact, most of…

  • Reverse Fault Definition

    Reverse Fault Reverse Fault: In the field of geology, a reverse fault is a dip-slip fault in which the hanging wall moves upwards, relative to the footwall. The average dipping angle of a reverse fault ranges from 45 to 90 degrees. However, if less than 45 degrees, it becomes a “thrust fault.” Reverse faults are…

  • Facies

    Facies Facies: In the field of geology, the term “facies” represents a mappable, areally restricted part of a rock body that has different fossils or lithology from other contiguous beds deposited at the same time.

  • Asthenosphere

    Asthenosphere Asthenosphere: The asthenosphere underlies the lithosphere. The Asthenosphere comprises the upper mantle, where isostatic adjustments are made, and where magma is generated. It is also in this part of the earth, where seismic waves strongly attenuate.