Geosyncline

Geosyncline

Geosyncline: In geology, a geosyncline is a large-scale indentation in the Earth’s crust that is filled with sediments. A geosyncline forms due to the gradual sinking of the Earth’s crust, causing sediment from adjacent areas to gather inside. An example of a geosyncline is the Appalachian Mountains.

Similar Posts

  • Control Panel for Methane Mitigation System

    Control Panel in a Methane Mitigation System Control Panel of a Methane Mitigation System: A methane mitigation control panel is the brain behind the active mitigation system. In accordance with the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, a control panel synchronizes methane alarm units with sensors and the…

  • Mineraloid

    Mineraloid Definition The term “mineraloid” refers to a natural earth substance that appears to be similar to a genuine mineral, although lacks any form of internal structure and crystal form. Nonetheless, a mineraloid does comprise true minerals within it. For instance, Fire Opal and Blue Opal are not minerals because they are amorphous (do not…

  • Design Methane Pressure (Soil Formation Pressure)

    Design Methane Pressure (Soil Formation Pressure) Design Methane Pressure or Soil Formation Pressure: As per the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, Design Methane Pressure means the highest observed measurement of soil formation pressure during the methane testing process. In fact, a Design Methane Pressure measurement that is…

  • Reverse Fault Definition

    Reverse Fault Reverse Fault: In the field of geology, a reverse fault is a dip-slip fault in which the hanging wall moves upwards, relative to the footwall. The average dipping angle of a reverse fault ranges from 45 to 90 degrees. However, if less than 45 degrees, it becomes a “thrust fault.” Reverse faults are…

  • Stratosphere

    Stratosphere Stratosphere: The stratosphere of a terrestrial planet is the second-lowest member of the atmosphere. On Earth, the stratosphere starts atop the troposphere at approximately 10 kilometers above mean sea level, and terminates roughly 50 kilometers above mean sea level. In fact, geologists understand that the Earth’s ozone layer exists within the stratosphere, which absorbs…