Hydrogen Sulfide Soil Gas

Hydrogen Sulfide Soil Gas (In Natural Gas)

Hydrogen Sulfide: Hydrogen sulfide (H2S) soil gas geologically occurs upon the thermal and microbial decomposition of subsurface organic material deposits. It is typically identifiable in biogenic and petrogenic natural gas sources, along with higher concentrations of methane soil gas. Additionally, nitrogen, oxygen, hydrogen, ethane, and isobutane exist within natural gas deposits. Hydrogen Sulfide soil gas has a rotten egg odor that commonly occurs amongst petroleum deposits, volcano craters, surfacing tar pits, and more.

What Does Hydrogen Sulfide do to the Body?

General symptoms of hydrogen sulfide exposure can include dizziness, nausea, and headaches. And a high concentration in a breathing zone can cause respiratory failure and asphyxiation issues. In fact, the Occupational Safety and Health Administration (OSHA) reports a permissible exposure limit (PEL) of 10 parts per million by volume (ppm) in worker breathing spaces. Whereas any concentration exceeding this PEL is unsafe.

Other Exposure Hazards

Within minutes of a person’s exposure to hydrogen sulfide, their ability to detect its odor can quickly diminish. As a result, the danger further lies with the hazards of other associated gases, as well as the lack of oxygen. For instance, a house overlaying a Los Angeles Methane Zone without a vapor barrier may have trace amounts of hydrogen sulfide and combustible methane soil gas in the lowest occupied space. And methane gas is odorless and colorless. Thus, the only human indication of natural gas intrusion is the temporary hydrogen sulfide odor. If people within the house no longer smell that odor, they may also believe the methane soil gas hazard is mitigated, under false pretenses.

Similar Posts

  • Growth Fault

    Growth Fault Growth Fault: In geology, a growth fault is a strike-slip fault or dip-slip fault that moves contemporaneously with deposition. This causes the throw (amount of vertical displacement) to increase with depth and the strata to be thicker on the downthrown side as compared to the upthrown side.

  • Methane Mitigation Soil Gas Pressure Sensor

    Methane Mitigation Soil Gas Pressure Sensor Methane Mitigation Soil Gas Pressure Sensor: A Methane Mitigation Soil Gas Pressure Sensor is a device that measures and communicates sub-slab soil gas pressure to a methane control panel system. High levels of methane soil gas then trigger the integrated methane alarm system to notify occupants of danger. Much…

  • Seismology

    Seismology Seismology: (seis·mol·o·gy) a branch of geology and geophysics that relates to earthquakes, including but not limited to their causes, effects, hazards, and mitigation techniques.  Seismologists at the United States Geological Survey (USGS) use cutting-edge technology to measure seismic wave properties and geological hazards that trigger them or are triggered by them. In turn, seismology…

  • Dry Strength

    Dry Strength “Dry Strength” is a value that represents the strength of a soil sample, when dry, as determined by the crushing test. There is a common geotechnical engineering laboratory procedure for determining the cohesiveness or plasticity of a sample with organic or inorganic clays and silts.  

  • Trench Dam

    Trench Dam Trench Dam: Per the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, a trench dam is part of a methane mitigation system. A trench dam is essentially a subsurface barrier that exists within a furrow or ditch, that is adjacent to the foundation of a building in a…

  • Design Methane Pressure (Soil Formation Pressure)

    Design Methane Pressure (Soil Formation Pressure) Design Methane Pressure or Soil Formation Pressure: As per the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, Design Methane Pressure means the highest observed measurement of soil formation pressure during the methane testing process. In fact, a Design Methane Pressure measurement that is…