Strike-Slip Fault (Transform Fault) Definition

Strike-Slip Fault or Transform Fault

Strike-Slip Fault (Transform Fault): In the field of geology, a strike-slip fault, or a transform fault, is a fault in which movement is parallel to the strike of the fault plane. The opposite of a strike-slip fault is a dip-slip fault.

Left-Lateral or Right-Lateral Strike-Slip Fault

A transform fault can be either left-lateral or right-lateral. This defines the type of strike-slip fault-movement. It is determined by selecting one block as a reference. And then examining the movement of the other block in relation to the referenced. To simplify, geology students and geologists in the field imagine themselves standing on the reference block, looking outward to the moving block.

Left-Lateral Strike-Slip Fault

For instance, a left-lateral strike-slip fault means the block opposite from which one is standing, moves left. The image below provides a block diagram of a left-lateral strike-slip fault or left-lateral transform fault. In this case, the field geologists would picture themselves standing on the blue block. Note the directions of the arrows.

Block Diagram of a Left-Lateral Strike-Slip Fault or Left-Lateral Transform Fault
Block Diagram of a Left-Lateral Strike-Slip Fault or Left-Lateral Transform Fault – By Geo Forward

Right-Lateral Strike-Slip Fault

A right-lateral transform fault means the block opposite from which one is standing upon is moving right. To illustrate, the image below provides a block diagram of a right-lateral strike-slip fault or right-lateral transform fault. Here, the geologists would imagine themselves on the red block. And please note the directions of the arrows.

Block Diagram of a Right-Lateral Strike-Slip Fault or Right-Lateral Transform Fault
Block Diagram of a Right-Lateral Strike-Slip Fault or Right-Lateral Transform Fault – By Geo Forward

Similar Posts

  • Geosyncline

    Geosyncline Geosyncline: In geology, a geosyncline is a large-scale indentation in the Earth’s crust that is filled with sediments. A geosyncline forms due to the gradual sinking of the Earth’s crust, causing sediment from adjacent areas to gather inside. An example of a geosyncline is the Appalachian Mountains.

  • Concrete Arch Dam

    What is a Concrete Arch Dam? A Concrete Arch Dam is a curved freshwater-retaining structure that is concave in the hydro-geologically down-gradient direction, and uniformly thick from the base to top. With Concrete Arch Dams, a major part of the water load value gets distributed to the abutments of the dam. Thus, Concrete Arch Dams…

  • Water Table

    Water Table Water Table: In the hydrogeology branch of geology, the water table represents the surface of an unconfined groundwater aquifer, where the hydraulic pressure is equal to atmospheric pressure. Additionally, a water table is present in a perched groundwater zone. Although, there is no water table in a confined aquifer.

  • Fault Creep

    Fault Creep Fault Creep: Fault creep means slow ground displacement of a strike-slip fault or dip-slip fault, that usually occurs without accompanying earthquakes. Fault creep can derive from tectonic activity, or be the result of excessive petroleum and groundwater pumping.

  • Active Methane Mitigation System

    Active Methane Mitigation Active Methane Mitigation: Active systems refer to the mechanical and electrical components of a methane mitigation system. In fact, the definition of an Active System is available in Methane Code (Ordinance No. 175790). This is a publication by the Los Angeles Department of Building and Safety (LADBS). Moreover, further descriptions of an…