Strike-Slip Fault (Transform Fault) Definition

Strike-Slip Fault or Transform Fault

Strike-Slip Fault (Transform Fault): In the field of geology, a strike-slip fault, or a transform fault, is a fault in which movement is parallel to the strike of the fault plane. The opposite of a strike-slip fault is a dip-slip fault.

Left-Lateral or Right-Lateral Strike-Slip Fault

A transform fault can be either left-lateral or right-lateral. This defines the type of strike-slip fault-movement. It is determined by selecting one block as a reference. And then examining the movement of the other block in relation to the referenced. To simplify, geology students and geologists in the field imagine themselves standing on the reference block, looking outward to the moving block.

Left-Lateral Strike-Slip Fault

For instance, a left-lateral strike-slip fault means the block opposite from which one is standing, moves left. The image below provides a block diagram of a left-lateral strike-slip fault or left-lateral transform fault. In this case, the field geologists would picture themselves standing on the blue block. Note the directions of the arrows.

Block Diagram of a Left-Lateral Strike-Slip Fault or Left-Lateral Transform Fault
Block Diagram of a Left-Lateral Strike-Slip Fault or Left-Lateral Transform Fault – By Geo Forward

Right-Lateral Strike-Slip Fault

A right-lateral transform fault means the block opposite from which one is standing upon is moving right. To illustrate, the image below provides a block diagram of a right-lateral strike-slip fault or right-lateral transform fault. Here, the geologists would imagine themselves on the red block. And please note the directions of the arrows.

Block Diagram of a Right-Lateral Strike-Slip Fault or Right-Lateral Transform Fault
Block Diagram of a Right-Lateral Strike-Slip Fault or Right-Lateral Transform Fault – By Geo Forward

Similar Posts

  • Terrestrial Planet Definition

    Terrestrial Planet Definition A terrestrial planet is any planet in the universe that has earth-like composition, such as rocks, and other similar solid substances. For instance, Mars is a terrestrial planet in our solar system, whereas Jupiter is not. This is because modern geologists, astrophysicists, and astronomers understand Mars to contain solid formations correlative to…

  • Transmissivity

    Transmissivity Transmissivity: In geology and hydrogeology, transmissivity (T) represents the capacity of an aquifer to transmit water of the prevailing kinematic viscosity. Formula T=Kb, where b = saturated thickness of the aquifer. Dimensions are gallons per day per foot (gpd/ft) or feet squared per day (ft^2/day).

  • Subsidence

    Subsidence “Subsidence” is a geologic condition, in which a localized mass movement occurs, resulting in the downward settlement of the earth over time. When subsidence occurs, the actual ground surface elevation is lower. This occurrence of the ground surface sinking is typically caused by groundwater table and aquifer reductions, by which the soils become more…

  • Darcy’s Law

    Darcy’s Law In the field of geology, Darcy’s Law is the universal and basic equation representing groundwater flow through a study area. Darcy’s Law Formula Q = KiA The following variables and coefficients apply to this formula: “K” = Hydraulic Conductivity; “Q” = Discharge Rate; “A” = Area of Cross-Section that Water Flows;

  • Silicates

    Silicates Definition In the fields of geology and mineralogy, the term “silicates” refers to compounds whose crystal structure contains SiO4 tetrahedra. Silicates are either isolated or joined to form groups, rings, single or double chains, sheets, or three-dimensional frameworks.

  • Rigidity

    Rigidity Definition Rigidity – In geotechnical engineering and engineering geology, rigidity represents the ratio of the shear stress and the amount of angular rotation that it produces, within a rock sample.